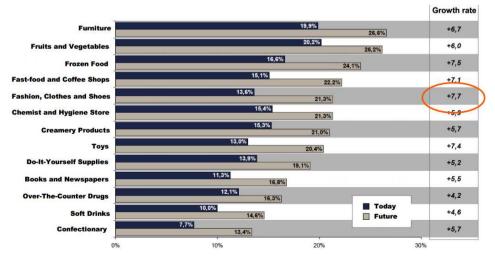
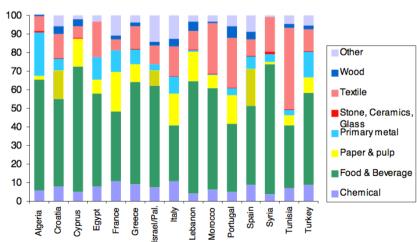
RESET Interreg Europe

Bioprocessing for Sustainable Production of Coloured Textiles: focus on water consumption and energy Saving

Project manager at Next Technology Tecnotessile (Italy)

chemtech@tecnotex.it


February 14th, 2017 | 2nd RESET Seminar on "Water consumption and energy saving" - Matosinhos (Porto)

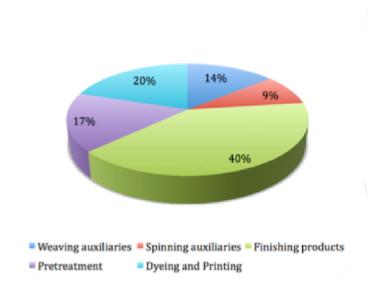

Textile Industry

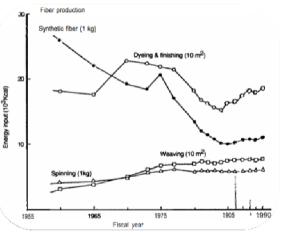
The textile and clothing industry is an important part of the European economy with more than 146.000 (source Eurostat) companies and is responsible for 10% of global GHG emissions, mainly CO₂ and CH₄, owing to the use of energy in the textile processes and transportation, and the production of chemicals applied in the finishing step. Therefore, it is necessary to reduce these emissions generated.

RESE^T **Interreg** Europe Sustainability and textile industry

Water consuming

At least 40 are required to textile


Processing subcategory	Water consumption, L/kg production	
Yarn and fabric forming		
Slashing	0.5-7.8	
Preparation		
Singeing	0	
Desizing	2.5-20	
Scouring	19-43	
Continuous bleaching	2.5-120	
Mercerizing	1.0	
Dyeing		
Beam	170	
Beck	230	
Jet	200	
Jig	100	
Paddle	290 250	
Skein		
Stock	170	
Pad-batch	17	
Package	180	
Continuous bleaching	170	
Indigo dyeing	8.3-50	
Printing	25	
Print afterwashing	110	
Finishing		
Chemical	5.0	
Mechanical	0	


Chemical consuming

About 60 million tonnes of Around 30 fibres and million produce 1 kg of tonnes/year of chemical auxiliaries are consumed (source Chemical Finishing)

Energy consuming

Tjoule (source per year UNIDO Japan)

Sustainability and textile industry: RESET BISCOL project case

BISCOL project (CIP-EIP-Eco-Innovation-2009) will be focused on the dyeing industry proposing a new dyeing process as global alternative for the bioconversion of raw materials into competitive eco-viable final products.

To reach this scope different expertises optimized during other research projects by partners of consortium will be combined, in particular:

Synthesis of bio-dyes: new bio-dyes will be synthetised at industrial scale by scale-up of bioreactor containing laccase enzyme, able to bio-synthetised new coloured compounds.

Textile pre-treatments: scale-up of technologies abling to increase dyeability of selected textiles versus bio-dyes.

Synthesis of new auxiliaries: new auxiliaries at lower environmental impact, will be synthetised at industrial scale and combined with bio-dyes.

Optimisation of dyeing process: reduction of energy demand of dyeing process (e.g. lowering temperature and time of treatments) will be combined with the use of new bio-dyes and auxiliaries and treated textile in order to validate at industrial scale the proposed new dyeing process.

ECO-efficiency in textile manufacturing

Changing how energy is managed by implementing management program is one of the most successful and cost-effective ways to bring about energy-efficiency improvements, including a revision of:

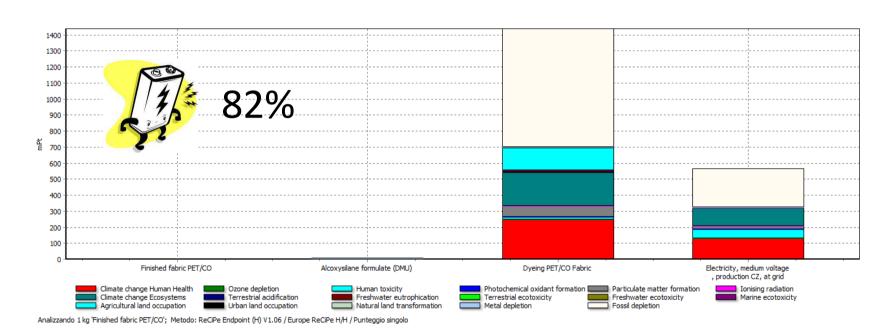
Facilities

Process Conditions (lower temperatures; reducing time)

Reducing non *renewable sources* consumption in the production process:

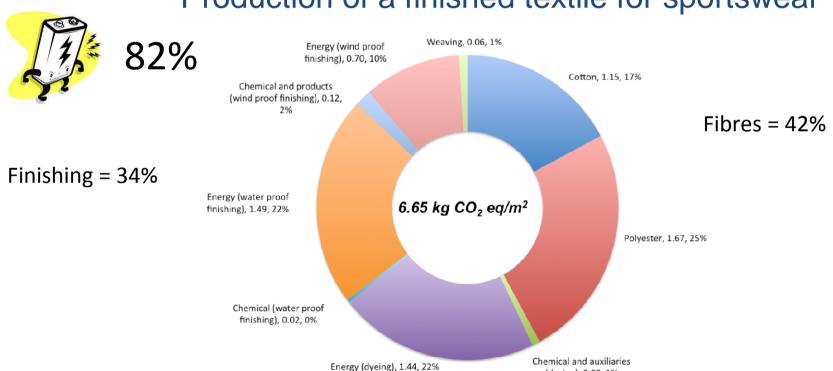
Replacing wet processing

Using safer chemicals
BISCOL


Use of waste materials as primary resources

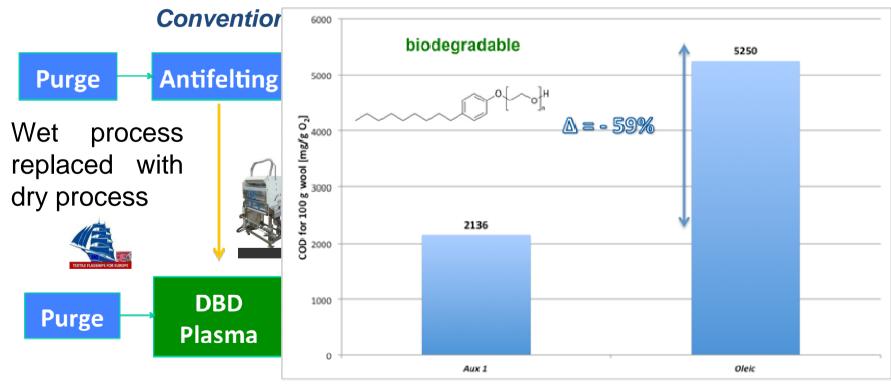
LCA and Textile Manufacturing

Production of a finished textile for sportswear


In the production of a sportwear apparel, fibres is contributing for the 53% of the overall impact (30% is due to the usage of natural fibres despite the fact it is just 20% in the total composition of the final fabric) and finishing is contributing for the remaining 46%.

ECO-efficiency in textile manufacturing

Production of a finished textile for sportswear


Dyeing = 23%

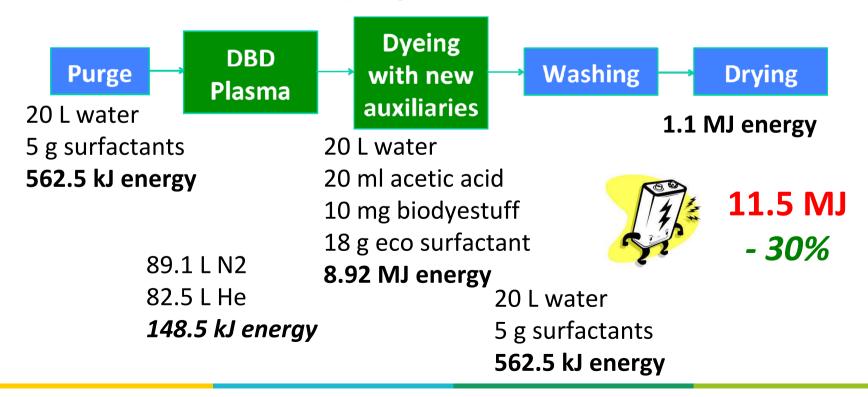
(dyeing), 0.06, 1%

Energy Consumption Reduction

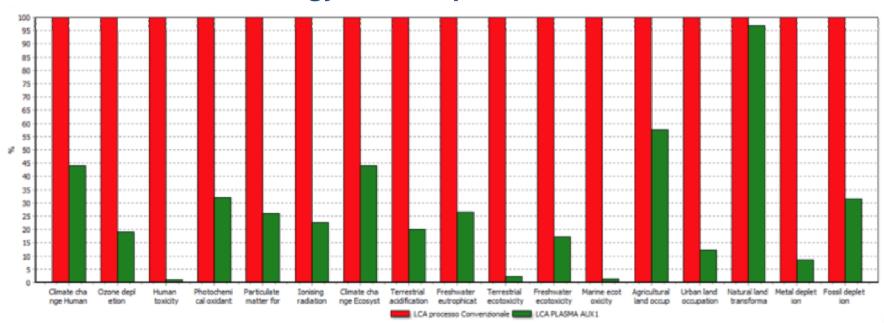
BISCOL Dyeing process for wollen fabrics

Energy Consumption Reduction

Conventional Dyeing process for wollen fabrics


Purge Antifelting	Dyeing →	Washing →	Drying
5 g surfactants 20 562.5 kJ energy 10 20 L water	5 g	L water surfactants 2.5 kJ energy	MJ energy 16.5 MJ

Energy Consumption Reduction


BISCOL Dyeing process for wollen fabrics

Energy Consumption Reduction

Carbon footprint is reduced up to 3.2 kg CO₂eq/kg (- 52%) Fossil depletion is reduced up to 0.45 Kg oil eq/kg (- 70%) Water depletion is reduced up to 45 L/kg (-59%)

Sustainability and textile industry

European Union European Regional **Development Fund**

Thank you!

http://www.biscol.unisi.it/

Project smedia